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Almost orthogonal quantum logics, i.e., atomic orthomodular lattices in which 
to every atom there exist only finitely many nonorthogonal atoms, are studied. 
It is shown that an almost orthogonal quantum logic is modular'if and only if it 
has the exchange property if and only if it can be embedded into a direct product 
of finite modular quantum logics. The class of almost orthogonal modular OMLs 
is the largest subclass of the class of atomic modular OMLs in which the condi- 
tions commutator-finite and block-finite are equivalent. A finite faithful valuation 
on an almost orthogonal quantum logic L exists if and only if L is modular and 
the set of all atoms of L is at most countable. 

1. BASIC D E F I N I T I O N S  AND F A C T S  

By a quantum logic we mean  an orthomodular lattice ( O ML)  [see 
K a l m b a c h  (1983) for details]. Recall that  a nonzero  element aeL  is an atom 
if 0 < b < a implies b = 0. An  O M L  L is atomic if  every nonzero  element in L 
conta ins  an atom. An  atomic O M L  L is almost orthogonal ( P u l ma nnovh  
and  Rie~anovfi, 1990b) if for every a tom a in L the set B~= {b~LIb is an 
a tom in L and  b~a'}  is finite. We say that  the O M L  L is a compact topo- 
logical OML (Puimannovf i  and  Rie~anovh, 1990b; Rie6anovh, 1989, 1990, 
1991 ; Choe and  Greechie, to appear)  if there exists a compact  Hausdorff  
topology r on  L such that  for any x,,, y,~, x, y~L  (a~A,  A is a directed 
set) 

r ' - ~ x '  x ~ x  implies x~ 

x~ ~ x, y~ -5* y implies x .  v y .  --~ x v y, x~ ^ y~ _5. x ^ y 
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A compact topological OML is profinite if it is a projective limit of finite 
OMLs. It was shown in Choe and Greechie (to appear) that an OML L is 
profinite if and only if it is a direct product of finite OMLs with their discrete 
topologies. 

If  L~, L2 are OMLs, then the mapping q~: Li ~ L2 is called a morphism 
if for all x, yeLl  the following hold: r vy)  = ~0(x) v ~0(y), ~0(x') = (tp(x))', 
and tp(0)= 0. If ~0 is bijective and a morphism, then tp is called an isomor- 
phism. The mapping q9: LI ~ L2 is called an embedding if tp: L1 ~ q~(LI)_~L2 
is an isomorphism [we sometimes identify L~ with q~(Li)]. A residually finite 
OML is an OML which can be embedded into a product of finite OMLs 
(Choe and Greechie, to appear). A complete ortholattice/~ is the MaeNeille 
completion of an OML L if L [precisely tp(L), q~: L ~ L is an embedding] is 
join-dense and meet-dense in/~,. If L is atomic, then evidently/~ is a complete 
atomic ortholattice such that q~(L) and L have the same set of all atoms. 
Recall that x~-~~ means that there exist u~, v~eL such that u~ _<x~ <v~ 
and u~ ,, x, v~ ~, x. The strongest of all topologies t such that x~ ~ o )  x implies 
x~ ~ x  is called the order topology r0 (Birkhoff, 1967; Sarymsakov et al., 
1983; Ern6 and Weck, 1980). An OML L is called (o)-eontinuous if x~ .zx, 
y ~ / ' y  implies x~ ^ y~ : x  ^ y  for any x~, x, y~, y~L. Let us recollect some 
results concerning compact topological OMLs. 

Theorem 1.1. Let L be an atomic OML. The following statements are 
equivalent: 

(i) L is (o)-continuous and the interval topology t; in L is Hausdorff. 
(ii) L is almost orthogonal. 
(iii) The MacNeille completion/~ of L is a compact topological OML 

in which L [precisely tp(L)] is a topologically dense subset. 
(iv) For any atom aEL, L=(O,a ' )uU~ ,=l (pk ,  l )  (dually L =  

(a, 1 ) w U ; = l  (0, pS,)), where Pk are atoms in L, pk~a'  
(k = 1, 2 . . . .  , n). 

Proof (ii) r (iv) is evident. 
(iv) =~ (i): Let a~L be an atom. Then L = (0, a ' )  w U~= i (Pk, 1), where 

Pk are atoms in L, pkzs (k= 1, 2 , . . . ,  n). Hence (0, a ') ,  U~=l (pk, 1) are 
two disjoint clopen sets in r;. If x, yeL,  xv~y, then there exists an atom 
a~L such that x~(0,  a ') ,  y~(0 ,  a ' )  (or xr  a'),  y~(0 ,  a ' ) ) .  Thus ri is 
Hausdorff [see also Pulmannowi and Rie~,anovh (1990b), Theorem 2.3(i)]. 

Since r0_-. r;, for any atom a~L, the interval (a, 1) is a clopen set in 
to. Let (x~)a~a be a net in L and let x~/~x. Then x~ ~ ~  and hence if 
x~ (a, 1), a~L is an atom, there exists a0~& such that for every a _> a0 we 
have x~ e (a ,  1 ~. This implies that for any y~L, y ^ x ,  ,~y ^ x [see Pulman- 
nova and Rogalewicz (to appear), Proposition 6, for an alternative proof]. 
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(i) =:, (iii) follows by RieSanovfi (1991), Theorem 2.1. 
(iii) =~ (ii): Let the compact topological OML (/~, r) be a MacNeille 

completion of L. Since the lattice operations and the orthocomplementation 
are continuous in r, the intervals (a, 1), (0, a ' )  are clopen sets in ~- for any 
atom a ~/~. Since for every atom a ~/~ we have/~ = (0, a ' )  u U { (P, 1 ) [ p ~ L 
is an atom} and r is compact, there exists a finite subcovering of / : .  Thus 
/~ = (0, a ' )  w [..)~= 1 (Pk, 1 ), which implies that /~, and hence also L, are 
almost orthogonal. 

In particular, L is a compact topological OML if and only if L is 
complete and almost orthogonal. In a compact topological OML (L, r) we 
have 

(o) r 
x~ -'-* x iff x ,  --~ x for any x~, x E L [abbreviated r = (o)] �9 

2. THE EXCHANGE PROPERTY, MODULARITY, 
AND PROFINITENESS 

The aim of this section is to show that for almost orthogonal OML 
the exchange property, modularity, and profiniteness (respectively residual 
finiteness) with modular factors are equivalent. We recall that an atomic 
OML has the exchange property if for every element x in L and all atoms a, 
b in L the following holds: 

(b ^x=O and b<_av x)~a<_bv x 

An OML L is irreducible if the center C(L) of L is trivial, i.e., C(L) = {0, 1 }. 
(Equivalently, L cannot be written in a nontrivial form of a direct product.) 

Kalmbach (1983, p. 145, Theorem 12) states that in an atomic OML L 
the following conditions are equivalent: 

(i) If a, b are distinct atoms in L, then there exists an atom c in L\{a, b} 
with c<_a v b. 

(ii) If A is finite orthogonal set of atoms in L and [AI>_2 holds, then 
there exists an atom c in L, e < V A  with not cCa for all aeA (cCa means 
that c is compatible with a). 

Proposition 2.1. Any complete irreducible almost orthogonal OML L 
satisfying the exchange property is finite and modular. 

Proof Let ILl > 2. By Theorem 1.1, L is a compact topological OML. 
For every atom a in L the set 

B~={b~L[b is an atom, b~a'} 
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is a finite and hence closed subset of  L. Since a~Ba, Ba ~ ~ for every atom 
a in L. Assume that there exists an infinite set A = {al, a2 . . . .  } of  mutually 
orthogonal atoms in L. Since L is complete and irreducible and has the 
exchange property, every two atoms a, b in L are perspective, i.e., there is 
an atom cEL\{a, b} with c<avb  (Kalmbach, 1983, p. 142, Theorem 8). 
This implies that the above condition (i) and hence also (ii) are satisfied. In 
view of (ii), for every k e I~ and a l, a 2  . . . . .  akeA we have ('] k=l B~, # ~ .  The 
compactness of L then implies that ( ~ 1  B,, 4: ~ ,  but this contradicts the 
almost orthogonality of  L. Therefore, any set of  mutually orthogonal atoms 
in L is finite, i.e., L has a finite height. By Example 16 of Kalmbach (1983, 
p. 156), L is modular. Let {aj, a2, �9 �9 �9 an} be a maximal orthogonal set of  
atoms in L. Then for every atom bEL, bv~a~ ( i = 1 , 2  . . . . .  n), we have 
beB,, for some ie{1, 2 . . . . .  n}. Thus the set of  all atoms in L is finite and 
hence L is finite. �9 

An alternative proof  can be obtained taking into account that in an 
atomic OML with the exchange property the perspectivity of  atoms 
is transitive and applying Pulmannov~ and Rogalewicz (to appear), 
Proposition 5. 

Proposition 2.2. Every complete almost orthogonal OM L  L satisfying 
the exchange property is isomorphic to a direct product I]~r  [0, cd, where 
ci are atoms in C(L) and [0, ci] (i~l) are finite irreducible modular OMLs. 

Proof Define a binary relation p on the set A(L) of all atoms in L by 
putting apb iff a ;~ b'. Let/5 be the transitive closure of p. By Pulmannov~t 
and Rie~anov~t (1990b), if {Tili~l} is the set of  all equivalence classes of/5, 
then for every ieI the element ci = ~ /T ;  is an atom in C(L) and V {cili~I} = 
1. Thus L is isomorphic to the direct product Ilia1 [0, cd. Moreover, [0, c;] 
are irreducible, complete almost orthogonal OMLs satisfying the exchange 
property. By Proposition 2.1, [0, c~] are finite modular OMLs. �9 

Remark 2.3. Let L be an almost orthogonal OML. I fL  has the exchange 
property, then the MacNeille completion/S of  L has the exchange property. 
This follows from Maeda and Maeda (1970, p. 54, Theorem 12.7). 

Theorem 2.4. Let L be an almost orthogonal OML. Then the following 
conditions are equivalent: 

(i) L is modular. 
(ii) L satisfies the exchange property. 
(iii) The MacNeille completion of  L is a direct product of finite 

irreducible modular OMLs. 
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Proof (i)=~ (ii): See, e.g., Kalmbach (1983, p. 153), Example 4. 
(ii) =~ (iii) : Let/S be the MacNeille completion of L (see Theorem 1.1). 

We identify L with q~(L) (where ~p: L ~/~, is an embedding). Then/~ and L 
have the same set of  all atoms. Applying Remark 2.3 and then Proposition 
2.2 on L, we obtain (iii). 

(iii)=~(i) is obvious. �9 

Since a compact topological OML is complete atomic and almost ortho- 
gonal (see Theorem 1.1), from the last theorem we obtain: 

Corollary 2.5. Let L be a compact topological OML. Then the following 
conditions are equivalent: 

(i) L is modular. 
(ii) L satisfies the exchange property. 
(iii) L is isomorphic to a direct product of finite irreducible modular 

OMLs. 

Remark 2.6. Every finite irreducible modular OM L  is of the form 21 or 
MO(n),  n~N (Kalmbach, 1983, p. 130). This implies that every compact 
topological O M L  satisfying the exchange property is a direct product of  a 
discrete Boolean algebra and factors of  type MO(n). 

Greechie and Herman (1985) showed that the class of  commutator- 
finite OMLs strictly contains the class of  block-finite OMLs. [Recall that an 
O M L  L is called commutator-finite (block-finite) if it contains only finitely 
many commutators (blocks). A block is a maximal Boolean subalgebra of  
L and for any x, yEL the commutator is defined by com(x, y ) = ( x  v y ) A  
(X' v y )  A (X vy ' )  A (X' vy') .]  We will show that these two classes coincide for 
modular almost orthogonal OMLs. 

Proposition 2. 7. Let L be a modular, atomic, commutator-finite OML. 
The following statements are equivalent: 

(i) L is block-finite. 
(ii) L is almost orthogonal. 

Proof Evidently, every atomic Boolean algebra has both properties (i) 
and (ii). Assume that L is a non-Boolean, modular, commutator-finite OML. 
Then by Greechie and Herman (1985), Theorem 14, L has an orthogonal 
decomposition 

L =  [0, eo] x [0, eli x .  �9 �9 x [0, ek] 

where ei (O<i<k) is an atom in C(L), [0, e0] is a Boolean algebra, and 
[0, e;], i=  1, 2 . . . . .  k, is an irreducible OML. Clearly, every [0, e~] (1 <i<k) 
is also modular and commutator-finite, and hence in view of Greechie and 
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Herman (1985), Theorem 16, it is of type MO(n), n>2 ,  for some cardinal 
number n. Now, from the decomposition of L it follows that L is block- 
finite if and only if every [0, e;] (1 < i < k) is finite. Hence L is block-finite if 
and only if L is almost orthogonal. �9 

Since every block-finite OML is commutator-finite, Proposition 2.7 
implies that in the class of modular atomic OMLs, any two of the three 
conditions block-finite, commutator-finite, and almost orthogonal imply the 
third one. As a corollary, we obtain the following statement. 

Theorem 2.8. The class of modular almost orthogonal OMLs is the 
largest subclass of the class of modular atomic OMLs in which the conditions 
block-finite and commutator-finite are equivalent. 

3. FAITHFUL VALUATIONS 

A finite valuation on an OML L is a map v: L ~ (0, co) such that v(0) = 
0 and V ( x v y ) = v ( x ) + v ( y ) - - V ( X A y )  for every x, yeL.  A valuation v on L 
is faithful if v (x)=0  implies x = 0 ,  xeL.  It is a well-known fact that the 
existence of a faithful finite valuation on an OML L implies that L is separ- 
able (i.e., every set of mutually orthogonal nonzero elements of L is at most 
countable) and modular (Sarymasakov et al., 1983, p. 36). We show that in 
the case of almost orthogonal OML the opposite implication also is true. 
[Denote xAy = (x vy)  ^ (x' vy').] 

Theorem 3.1. Let L be a separable modular almost orthogonal OML. 
Then there exists a faithful valuation 3 : / ~  (0, ~ )  on the MacNeille com- 
plet ion/[  of L such that for any net (.%)~ ___/~ and 2 e l ,  

(o) 
2~ ~ 2 (in/S) iff ~(2~A:~)~ 0 

The restriction v = ~/L of ~ to L is a finite faithful valuation on L such that 
for any net (x,)~ ___L and x e L  

~r 0 

x.  ---* x (in L) iff v(x.Ax) ~ 0 

Proof. In view of Theorem 2.4 and Proposition 2.2, the MacNeille 
completion of L i s / [=  Hi~t [0, ci], where for every iel, [0, c~] is a finite OML 
and ctEC(E) c~L. The separability of L implies that the set I is at most 
countable. Without loss of generality we can assume that I is infinite. For 
i=1 ,  2 . . . . .  there exists a faithful valuation v~: [0, c,-]~[0, 1/2~]. For 

- -  o D  ~ o o  x-(x~)~= l EL, let us define ~(x)= ~',i=1 v~(x~). It is easy to prove that 13 is an 
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(o)-continuous faithful valuation on f. with ~(1)= 1. Indeed, let 2, 37ei7,. 
Then 

~(~ v37) = E oi((~ vy)  ^ c~) 
i = 1  

= ~ oi((2 ^ c,) v (y  ^ c~)) 
,=, 

= E (0;(2 ^ c,) + v;(y ^ c , ) ) -  (vi(2 ^ y ^ c,)) 
i = 1  

= ~(~) + ~(37) - 0(~ A 2) 
0o 

which proves that ~ is a valuation. Moreover, ~3(1)=~=t vi(c;) = 
Y'2, (1/2~) = I. Clearly, ~ is faithful. 

Now assume that 5,~.z2, with 5a, 2 e s  Then for any i= l ,  2 . . . . .  
~ A Ci.Z 2 A ci [because (o) = v on /~ .  As [0, c,] is fnite, for every i = 1, 2 . . . .  
there exist a; such that for all a___at we have 5~ A C~=2A Ci. Let e > 0  

o0 
be arbitrary. As ~(2)=~i=lV~(2Aci ), there exists n0et~ such that 
ET~ 0,(2 A c,) > 0(2) -- ~. 

Let ao> at, a 2 , . . . ,  a,o. Then for all a > a0 we have s A C~=2 ^ Ci, i= 
1, 2 , . . . , n 0 ,  and hence 

n 0 rl0 

o(e~o) >_ X v,(e~o ^ cO = X v~(~ ^ c,) > e ( x ) - ,  
/ = I  i = 1  

On the other hand, ~(5~)_<~(x) for all a. Therefore ~(5,)2,3(x), which 
proves that ~ is (o)-continuous. 

Let (2~)~ c/S, 2e/S. Since/S is a direct product of finite OMLs, L is (o)- 
continuous and thus 2~ ___~(o))7 if 2~ A2 ---*(~ 0 (Sarymsakov et al., 1983, 
p. 76), and this implies ~(2, A2) ~ 0. Conversely, assume that 13(x~ Ax) --, 0 
and let (2~ A2)~ be an arbitrary subnet of (2, h2)~. Since (f~, r) is compact 
and r = (o), there exists a convergent subnet (xr Ax)r ~(o) 37e/S. This implies 
~7(2 r h2)  --, ~(37) = 0 and since ~ is faithful, we obtain 37 = 0. Thus 

2~ A2 ~ 0 (in/~) iff 13(2~ Ax) ---* 0 

Now let (x,~),~_L and assume that x,~--~~ (in L). By Rie6anov~t 
(1991), Theorem 2.4 (respectively Rie~anov~., 1990, Theorem 3), it holds 
that x~---**~ (in L) iff x~,---*(~ (in /~), which holds iff ~(x~ Ax)= 
v(x ,  hx) ---, O. 

As a consequence of this theorem and the preceding results, we obtain: 

Theorem 3.2. Let L be an almost orthogonal OML. The following state- 
ments are equivalent: 
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(i) There exists a finite faithful valuation on L. 
(ii) L is modular and the set of all atoms in L is at most countable. 
(iii) There exists an (o)-continuous faithful valuation v on L such that 

x ~ x ( i n L )  iff v(x~Ax)~O 

(iv) L is separable and has the exchange property. 
(v) L is residually finite and its MacNeille completion is isomorphic 

to a direct product of  at most countably many finite irreducible 
modular OMLs. 

REFERENCES 

Birkhoff, G. (1967). Lattice Theory, American Mathematical Society, Providence, Rhode 
Island. 

Ern6, M. and Weck, S. (1980). Order convergence in lattices, Rocky Mountain Journal of 
Mathematics, 10, 805-818. 

Greechie, R., and Herman, L. (1985). Commutator-finite orthomodular lattices, Order, 1, 
277-284. 

Kalmbach, G. (1983). Ortkomodular Lattices, Academic Press, New York. 
Maeda, F., and Maeda, S. (1970). Theory of Symmetric Lattices, Springer-Verlag, Berlin. 
Pulmannovfi, S., and Rie~anovfi, Z. (1990a). A remark to orthomodular lattices, in Proceedings 

of the 2nd Winter School on Measure Theory, Liptovsk~ J6n, pp. 175-176. 
Pulmannovfi, S., and Rie~anovfi, Z. (1990b). Compact topological orthomodular lattices, in 

Contributions to General Algebra 7, Proceedings of the Vienna Conference, June 14-17, 1990, 
pp. 277-282. 

Pulmannov~, S., and Rogalewicz, V. (1991). Orthomodular lattices with almost orthogonal 
sets of atoms, Commentationes Mathematicae Uniuersitatis Carolinae, 32, pp. 423-429. 

Rie~anovfi, Z. (1989). Topologies in atomic quantum logics, Acta Universitatis Carolinae 
Mathematica et Physica, 30, 143-148. 

Rie~anovfi, Z. (1990). On the MacNeille completion of (o)-continuous atomic logics, in 
Proceedings of the 2nd Winter School on Measure Theory, Liptovsk.~ J(m, pp. 182-187. 

Rie~anov~, Z. (1991). Application of topological methods to the completion of atomic ortho- 
modular lattices, Demonstratio Mathematica, XXIV (1-2), pp. 331-341. 

Sarymsakov, T. A., Ajupov, S. A., Chad~ijev, D., and Chilin, V. J. (1983). Order Algebras, 
FAN, Tashkent [in Russian]. 

Tae Ho Choe, and Greechie, R. (to appear). Profinite orthomodular lattices, Proceedings of 
the American Mathematical Society. 


